An Automated Constraint Modelling and Solving
Toolchain

Bilal Syed Hussain
Ozgur Akgun, Alan M. Frisch,
lan Gent, Christopher Jefferson,
Lars Kotthoff, lan Miguel, Peter Nightingale

Constraint Programming (CP)?

* A powerful technique for solving a wide range
of combinatorial problems.

* A constraint satisfaction problem (CSP) is:
— A set of variables with their associated domains.

— A set of constraints which specify restrictions on
the values the variables can take.

Constraint Modelling

A constraint model is description of a given
problem in terms of CSP.

There are typically many possible for a given
problem.

Non-experts have difficulty in formulating
good constraint models.
Our approach to solve this difficulty:

— Refine high level specifications of problems into
constraint models.

Automatic constraint modelling

* Our approach to solve this difficulty:

— Refine high level specifications of problems in our
language Essence into constraint models.

— Allow the user to work solely using high level
specifications.

— Abstracts away the complexity of representation
selection and interpreting the results.

— Retains the efficiency of the constraints solver(s).

Essence

* Ahigh level problem specification language

using familiar mathematical notation:
* Functions

* Relations.

* Partitions

* Sets & mutisets

* Provides nested types:
— Such as set of set of int

Example: Social Golfers

* In a golf club there are a number of golfers
who wish to play together in g groups of
size

* Find a schedule of play for w weeks such that
no pair of golfers play together more than
once.

Social Golfers: Modelling

* |In each week, we need to the golfers
Into groups.

 What about the weeks?
— A sequence? But what does the order matter?

— A multiset then.

* So the problem is to find a o

Social Golfer: Essence

* |n a golf club there are a number of golfers
who wish to play together in g groups of size

given w, g, s : int(l..)
* This is a class of problems, to get an instance
parameters have to be provided.

Social Golfer: Essence

* There are g x s golfers, which are interchangeable.
letting Golfers be new type of size g * s

* Find a schedule of play for w weeks.
find sched : mset (size w) of
partition (regular, size g) from Golfers

Social Golfer: Socialisation Constriant

* such that no pair of golfers play together more
than once.

such that
forAll weekl in sched .
forAll week2 in sched , weekl != week2 .

For each pair of distinct weeks,

10

Social Golfer: Socialisation Constraint

such that
forAll weekl in sched .
forAll week2 in sched , weekl != week?2

forAll groupl in parts(weekl)
forAll group2 in parts(week2)
| groupl intersect group2| < 2

The intersection of any pair of groups is at
most one golfer.

11

Social Golfer: Complete Essence

language Essence 1.3.0

given w, g, s : int(l..)

letting Golfers be new type of size g * s
find sched : mset (size w) of

partition (regular, size g) from Golfers

such that
forAll weekl in sched
forAll week2 in sched , weekl != week2

forAll groupl in parts(weekl)
forAll group2 in parts(week2)
| groupl intersect group2| < 2

12

An overview of the Toolchain

Essence Param values e .
Essence Specification Essence Solution

1

1
1
\

\ / .
. Essence Essence’ Solution

Minion Solution

Essence’ Param

Minion Language

13

An overview of the Toolchain

Essence Param values e .
Essence Specification Essence Solution

[]
|]
1
|
.

. Essence’ Solution

Minion Solution

Essence’ Param

Minion Language

14

An overview of the Toolchain

Essence Param values e .
Essence Specification Essence Solution

-

. e
e
4
7/
/
4
/
1
1
1
y
Conjure Conjure Conjure

1

1
1
\

/ .
' ' Essence Essence’ Solution
Essence’ Param \

AY
\

Minion Language Minion Solution

15

An overview of the Toolchain

Essence Param values e .
Essence Specification Essence Solution

1

1
1
\

\ / .
. Essence Essence’ Solution

Minion Solution

Essence’ Param

Minion Language

16

An overview of the Toolchain

Essence Param values e .
Essence Specification Essence Solution

1

1
1
\

\ / .
. Essence Essence’ Solution

Minion Solution

Essence’ Param

Minion Language

17

An overview of the Toolchain

* Conjure: Generates models from the problem

specification, Essence ~ Essence’.

e SavileRow: Compiles highly efficient models,
Essence’ ~ Minion.

 Minion: A very efficient CP solver.

18

Model Selection

* Conjure can generate multiple models for a
given problem.

* Having multiple models is: an opportunity
rather than a difficulty.

* Conjure can pick all the generated models, or
a selection by:
— Randomly picking.
— Using heuristics.

19

Conclusion

e Make CP more accessible.

— allowing the user to write a high level specifications
while retaining the high performance of the CP
solvers.

* Allows the use of nested types and familiar
mathematical notation.

* No expertise needed:
— To model the problem.
— To select a good model.

20

