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Motivation

✤ One approach to automated constraint modelling is to 
generate, then select from a set of candidate models.!

✤ To choose a subset of these models we need instances 
which are discriminating.!

-  Allowing us to pick models with superior runtime performance. !

✤ We will show methods which can generate these 
instances automatically.
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Overview

✤ Automated Modelling!

✤ Model Selection!

✤ Generating Discriminating Instances!

✤ Experimental Results
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Automated modelling?

✤ The user writes a specification in Essence which supports:!
- Abstract types including relations, (multi-)sets and partitions. !

- These types can  be arbitrarily nested.  !

✤ This abstracts over the modelling decisions.!

✤ The specification is then refined into a set of constraint 
models that a solver can solve.  !

- We want to pick 1 (or a subset) of the models with good 
performance.
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 Social Golfer Problem (SGP)

✤ In a golf club there are a number of golfers who wish to 
play together in g groups of size s.!

✤ Find a schedule of play for w weeks such that no pair of 
golfers play together more than once.
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 Social Golfer Problem (SGP)

given w, g, s : int(1..100)!
letting Golfers be new type of size g * s!
find schedule : set (size w) !
! ! ! ! ! of partition (regular, size g) from Golfers!
such that!
    forAll {week1, week2} subsetEq schedule .!
        forAll group1 in parts(week1) .!
! ! ! forAll group2 in parts(week2) .!
            ! |group1 intersect group2| < 2
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Model Selection - Racing

✤ To select a subset of the models, we perform a series of races 
with each instance as they are generated. !

✤ A model is ρ-dominated on an instance by another model if 
the runtime for the second model is at least ρ times better 
than the first.!

✤ The winners of an instance race are the models not ρ-dominated. "

✤ The discriminatory quality of an instance is the fraction of 
models that are ρ-dominated.
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Model Selection - Racing
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Instance Space

✤ The instance space is defined by the parameters of a problem 
class.!

✤  Social Golfer Problem has 3 independent integer parameters.!

- given w, g, s : int(1..100)!

✤ The Progressive Party (CSPLib 13) is timetabling problem: !

- Certain boats are to be designated hosts.!

- Remaining boats in turn visit the host boats for several successive half-hour 
periods.!

- Each boat has limited capacity.
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The Progressive Party Problem(PPP)

✤ The Progressive Party has complex set of dependent 
parameters; 3 integers and 2 functions.!

- Two of the integers determine the domain of the two given 
functions.
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given n_upper, n_boats, n_periods : int(1..)!
letting Boat be domain int(1..n_boats)!
given capacity, crew : function (total) Boat --> int(1..n_upper) !
where forAll i : Boat . crew(i) <= capacity(i),!
!
find …    such that …



Generating Discriminating Instances

✤ Undirected — For each race in a sequence, undirected 
simply draws a sample from the instance space and 
runs a race.!

✤ SMAC — Utilises a existing algorithm configuration 
system.!

✤ Markov — This method is loosely based on the 
Markov chains Monte Carlo methods.
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SMAC

✤ SMAC (Hutter et al) is an existing algorithm configuration system:!

- Given an algorithm, a description of its parameters, and a set of instances, !

- It finds the set of parameters for the algorithm that delivers the best performance on the set of 
instances.!

✤  Finding discriminatory instances is a similar setting:!

-  The algorithm is the problem class specification, its parameters instantiate particular instances 
of the class and the set of problem “instances” is the set of models.!

✤ We encode the problem class parameters into SMAC’s input format, which 
uses integer and categorical variables.!

- For more structured givens such as functions we use multiple SMAC parameters.!

- For a total function, we use n SMAC parameters, where n is the maximum number of mappings  
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Markov

✤ Markov uses an acceptance function to determine if an 
sampled instance should be run. !

✤ It does this by utilising data about the quality of previous 
instances to infer the quality of the candidate instance.!

✤ Attracted towards known discriminating instances. !

✤ Repelled from known non-discriminating instances.
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Markov — Distance calculation

✤ An instance's quality is used to effect other instance in its 
range of influence. !

✤ Our measure of proximity between two instances is the 
distance between each pair of parameters combined using 
the Euclidean distance. !

✤ The calculation for the distance between each pair of  
parameters is specified per type. !

- Ints : The absolute difference between the two values.!

- Sets:  Given sets S and T , the distance is  
16
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Markov — Acceptance function
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Markov — Acceptance function

✤ G’  uses the set of all previous accepted instances within 
distance r of xi

’
. !

- If non-empty the mean of the set is returned otherwise 0.5!

✤  A pseudorandom number u is generated within [0, 1], and 
xi

’ is accepted if A(xi-1, xi
’) > u .!

✤ Note that the proposed instance is always accepted if its 
estimated quality is greater then the previous instance's true 
quality. 
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Markov

19

accepted points

Candidate Point



Markov

19

accepted points



Markov

19

accepted points

0.2

0.8



Markov

19

accepted points

0.2

0.8

est:0.5



Markov

20

accepted points



Markov

20

accepted points



Markov

20

accepted points

0.1

0.3



Markov

20

accepted points

0.1

0.3
est:0.2



Markov

21

accepted points
rejected



Sampling Instances

✤ For independent parameters, uniform sampling is 
straightforward:!

- generate a value uniformly and independently for each parameter of the 
instance.!

✤ For dependent parameters this is more difficult, consider 
where n_upper and n_boats are also parameters."

- given capacity: function (total) int(1..n_boats) --> int(1..n_upper) !

- If generated independently, the sampling would be biased, since there are 
many more possible functions for large values of n_boats — meaning a  
particular function with less mappings is more likely to be picked.
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Uniform Sampling

✤ One way of sampling uniformly from a specification 
that has dependent parameters is to enumerate all 
possible instances then select an instance from these.!

✤ This is done creating a new Essence specification E* 
which convert the original into an enumeration 
problem.!

✤ given w, g, s : int(1..100)  →  find w, g, s : int(1..100)
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Uniform Sampling

✤ A constraint model of E*, is produced automatically, 
using Conjure’s compact heuristic. !

- The compact heuristic greedily picks the transformations which  
produce smaller expressions.!

✤ This is adequate since enumeration problems are 
usually easy, but time and space consuming.
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Uniform Sampling

✤ Uniform sampling by this method is infeasible for large domains or 
large number of  parameters. !

✤ An alternative solver-random which uses Minion to produce a single 
solution by employing a random variable and value order. While 
scaleable this has an inherent bias, because of the distribution of the 
solutions. !

✤ Experimentally over problems classes with instance spaces restricted 
to ~1 Billion instances,  solver-random produced as discriminating 
instances as uniform sampling, while being more scalable.!

✤  Therefore we use solver-random in the rest of the experiments.
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Output

✤ We wish to pick a small set of models which have 
good performance.!

✤ Once all the races on the generated instances are 
completed we have a set of models then has have the 
best runtime performance on each instance.!

✤ Simple case:  A subset of the models wins every races !

- We return that subset.
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Fracturing 

✤ The simple case does not always happen.!

- Sometimes no model wins every race. !

✤ This means that means that instance space is fractured.
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Fracturing

28

A

B

0 5 10

M
od

el

A

B

0 5 10

M
od

el

Instance 1

Instance 2

ρ=2



Fracturing

✤ A set of instances is ρ-fractured if every model is ρ-dominated on at least 
one instance.!

✤ We find a minimum hitting sets of all winners of the races {a1, a2, a3, …}, 
which gives us coverage of all the instance while reducing the number 
of models!

- The choice of the hitting set is arbitrary,  as with the non-fractured case we include 
models which we could not prove are worse (i.e non-dominated).!

✤ We define the set Ai as the set of models that won every race that ai won.!

✤ The set of sets {A1, A2, A3, ...} then gives a summary of the winning 
models over all fractured parts of the instance space.
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Output - Example

✤ Say we have 4 models  a..d and 3 instances I1..I3!

- I1  —  a & d were winners.!

- I2  —  a, b & d were winners.!

- I3  —  b & c were winners.!

✤ Minimum hitting set:  {a, b}!

- a & b cover all instances, hence c is not needed.!

✤ Set of sets   : { {a, d},  {b} }!

- d won every race a did.
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Experimental Setup

✤ 6 Problem classes!
- Knapsack, Langford’s Problem, Social Golfers, Progressive 

Party,Warehouse Location  Problem and Balanced Academic Curriculum.!

✤ For each problem class,  30 races, each with a time budget of 6 hours:!

- The time budget is divided by the number of models to obtain the 
maximum time allowed for a particular model to solve an instance.!

- We report the output set sizes, the steps to convergence and number of 
models the problem can started with, over three independent runs.
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Experimental results - PPP

✤ PPP started of with most models.!

✤ Instance space is fractured.!

✤ When fracturing is detected, Markov is more consistent 
than Undirected in the size of the returned set.
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Experimental results

✤ Knapsack:  All methods identified that the instance 
space is fractured into two parts.!

✤ Langford: Markov shows a slight edge in 
performance returning a single model in one case.
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Experimental results - BACP

✤ SMAC performed  poorly, because of the difficulty of encoding:!
- BACP has a complex instance space defined by 7 integers, a function and a relation.!

- When one given depends on another, such as the size of the domain of the 
function: we must be conservative: sufficient SMAC parameters are used to 
accommodate the maximum size of the structured given.!

- Although SMAC has demonstrated that it is able to handle large parameter spaces, 
this conservative encoding may hinder its ability to cover the space effectively, 
since many of the values it is producing may be ignored.
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Experimental results - Summary 

✤ Our experimental evaluation shows that all of these 
methods are capable of reducing a large number of 
possible models to a much smaller set.!

✤ Overall Markov was able to detect the most fractures 
and reduce the number of models the most.!

✤ For SMAC, the necessary conservative encodings may 
hinder its ability to cover the space effectively.
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Conclusion

✤ During Automated Modelling we generate many 
alternate models.!

✤ To select between them we generate discriminating 
instances drawn from the problem class.!

✤ The methods are able to detect fracturing if it occurs 
and successfully determine the best models for each 
fraction.
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