
CP 2014

Discriminating Instance
Generation for Automated
Constraint Model Selection
Ian P. Gent, Bilal Syed Hussain, Christopher Jefferson, Lars Kotthoff, Ian Miguel,
Glenna F. Nightingale, and Peter Nightingale

1

Motivation

✤ One approach to automated constraint modelling is to
generate, then select from a set of candidate models.!

✤ To choose a subset of these models we need instances
which are discriminating.!

- Allowing us to pick models with superior runtime performance. !

✤ We will show methods which can generate these
instances automatically.

2

Overview

✤ Automated Modelling!

✤ Model Selection!

✤ Generating Discriminating Instances!

✤ Experimental Results

3

Automated modelling?

✤ The user writes a specification in Essence which supports:!
- Abstract types including relations, (multi-)sets and partitions. !

- These types can be arbitrarily nested. !

✤ This abstracts over the modelling decisions.!

✤ The specification is then refined into a set of constraint
models that a solver can solve. !

- We want to pick 1 (or a subset) of the models with good
performance.

4

 Social Golfer Problem (SGP)

✤ In a golf club there are a number of golfers who wish to
play together in g groups of size s.!

✤ Find a schedule of play for w weeks such that no pair of
golfers play together more than once.

5

 Social Golfer Problem (SGP)

given w, g, s : int(1..100)!
letting Golfers be new type of size g * s!
find schedule : set (size w) !
! ! ! ! ! of partition (regular, size g) from Golfers!
such that!
 forAll {week1, week2} subsetEq schedule .!
 forAll group1 in parts(week1) .!
! ! ! forAll group2 in parts(week2) .!
 ! |group1 intersect group2| < 2

6

 Social Golfer Problem (SGP)

given w, g, s : int(1..100)!
letting Golfers be new type of size g * s!
find schedule : set (size w) !
! ! ! ! ! of partition (regular, size g) from Golfers!
such that!
 forAll {week1, week2} subsetEq schedule .!
 forAll group1 in parts(week1) .!
! ! ! forAll group2 in parts(week2) .!
 ! |group1 intersect group2| < 2

7

 Social Golfer Problem (SGP)

given w, g, s : int(1..100)!
letting Golfers be new type of size g * s!
find schedule : set (size w) !
! ! ! ! ! of partition (regular, size g) from Golfers!
such that!
 forAll {week1, week2} subsetEq schedule .!
 forAll group1 in parts(week1) .!
! ! ! forAll group2 in parts(week2) .!
 ! |group1 intersect group2| < 2

8

Model Selection - Racing

✤ To select a subset of the models, we perform a series of races
with each instance as they are generated. !

✤ A model is ρ-dominated on an instance by another model if
the runtime for the second model is at least ρ times better
than the first.!

✤ The winners of an instance race are the models not ρ-dominated. "

✤ The discriminatory quality of an instance is the fraction of
models that are ρ-dominated.

9

Model Selection - Racing

10

A

0 50 100
Runtime

M
od

el
s

Model Selection - Racing

10

A

B

0 50 100
Runtime

M
od

el
s

Model Selection - Racing

10

A

B

C

0 50 100
Runtime

M
od

el
s

Model Selection - Racing

10

A

B

C

D

0 50 100
Runtime

M
od

el
s

Instance Space

✤ The instance space is defined by the parameters of a problem
class.!

✤ Social Golfer Problem has 3 independent integer parameters.!

- given w, g, s : int(1..100)!

✤ The Progressive Party (CSPLib 13) is timetabling problem: !

- Certain boats are to be designated hosts.!

- Remaining boats in turn visit the host boats for several successive half-hour
periods.!

- Each boat has limited capacity.
11

The Progressive Party Problem(PPP)

✤ The Progressive Party has complex set of dependent
parameters; 3 integers and 2 functions.!

- Two of the integers determine the domain of the two given
functions.

12

given n_upper, n_boats, n_periods : int(1..)!
letting Boat be domain int(1..n_boats)!
given capacity, crew : function (total) Boat --> int(1..n_upper) !
where forAll i : Boat . crew(i) <= capacity(i),!
!
find … such that …

Generating Discriminating Instances

✤ Undirected — For each race in a sequence, undirected
simply draws a sample from the instance space and
runs a race.!

✤ SMAC — Utilises a existing algorithm configuration
system.!

✤ Markov — This method is loosely based on the
Markov chains Monte Carlo methods.

13

SMAC

✤ SMAC (Hutter et al) is an existing algorithm configuration system:!

- Given an algorithm, a description of its parameters, and a set of instances, !

- It finds the set of parameters for the algorithm that delivers the best performance on the set of
instances.!

✤ Finding discriminatory instances is a similar setting:!

- The algorithm is the problem class specification, its parameters instantiate particular instances
of the class and the set of problem “instances” is the set of models.!

✤ We encode the problem class parameters into SMAC’s input format, which
uses integer and categorical variables.!

- For more structured givens such as functions we use multiple SMAC parameters.!

- For a total function, we use n SMAC parameters, where n is the maximum number of mappings
14

Markov

✤ Markov uses an acceptance function to determine if an
sampled instance should be run. !

✤ It does this by utilising data about the quality of previous
instances to infer the quality of the candidate instance.!

✤ Attracted towards known discriminating instances. !

✤ Repelled from known non-discriminating instances.

15

Markov — Distance calculation

✤ An instance's quality is used to effect other instance in its
range of influence. !

✤ Our measure of proximity between two instances is the
distance between each pair of parameters combined using
the Euclidean distance. !

✤ The calculation for the distance between each pair of
parameters is specified per type. !

- Ints : The absolute difference between the two values.!

- Sets: Given sets S and T , the distance is
16

p
|S \ T |+ |T \ S|

Markov — Acceptance function

17

A(xi�1, x
0
i) =

G

0(x0
i)

G(xi�1)

Previous instance

Proposed instance
Quality of previous instance

Estimated quality of
proposed instance

Markov — Acceptance function

✤ G’ uses the set of all previous accepted instances within
distance r of xi

’
. !

- If non-empty the mean of the set is returned otherwise 0.5!

✤ A pseudorandom number u is generated within [0, 1], and
xi

’ is accepted if A(xi-1, xi
’) > u .!

✤ Note that the proposed instance is always accepted if its
estimated quality is greater then the previous instance's true
quality.

18

Markov

19

accepted points

Candidate Point

Markov

19

accepted points

Markov

19

accepted points

0.2

0.8

Markov

19

accepted points

0.2

0.8

est:0.5

Markov

20

accepted points

Markov

20

accepted points

Markov

20

accepted points

0.1

0.3

Markov

20

accepted points

0.1

0.3
est:0.2

Markov

21

accepted points
rejected

Sampling Instances

✤ For independent parameters, uniform sampling is
straightforward:!

- generate a value uniformly and independently for each parameter of the
instance.!

✤ For dependent parameters this is more difficult, consider
where n_upper and n_boats are also parameters."

- given capacity: function (total) int(1..n_boats) --> int(1..n_upper) !

- If generated independently, the sampling would be biased, since there are
many more possible functions for large values of n_boats — meaning a
particular function with less mappings is more likely to be picked.

22

Uniform Sampling

✤ One way of sampling uniformly from a specification
that has dependent parameters is to enumerate all
possible instances then select an instance from these.!

✤ This is done creating a new Essence specification E*
which convert the original into an enumeration
problem.!

✤ given w, g, s : int(1..100) → find w, g, s : int(1..100)

23

Uniform Sampling

✤ A constraint model of E*, is produced automatically,
using Conjure’s compact heuristic. !

- The compact heuristic greedily picks the transformations which
produce smaller expressions.!

✤ This is adequate since enumeration problems are
usually easy, but time and space consuming.

24

Uniform Sampling

✤ Uniform sampling by this method is infeasible for large domains or
large number of parameters. !

✤ An alternative solver-random which uses Minion to produce a single
solution by employing a random variable and value order. While
scaleable this has an inherent bias, because of the distribution of the
solutions. !

✤ Experimentally over problems classes with instance spaces restricted
to ~1 Billion instances, solver-random produced as discriminating
instances as uniform sampling, while being more scalable.!

✤ Therefore we use solver-random in the rest of the experiments.
25

Output

✤ We wish to pick a small set of models which have
good performance.!

✤ Once all the races on the generated instances are
completed we have a set of models then has have the
best runtime performance on each instance.!

✤ Simple case: A subset of the models wins every races !

- We return that subset.

26

Fracturing

✤ The simple case does not always happen.!

- Sometimes no model wins every race. !

✤ This means that means that instance space is fractured.

27

Fracturing

28

A

B

0 5 10

M
od

el

A

B

0 5 10

M
od

el

Instance 1

Instance 2

ρ=2

Fracturing

✤ A set of instances is ρ-fractured if every model is ρ-dominated on at least
one instance.!

✤ We find a minimum hitting sets of all winners of the races {a1, a2, a3, …},
which gives us coverage of all the instance while reducing the number
of models!

- The choice of the hitting set is arbitrary, as with the non-fractured case we include
models which we could not prove are worse (i.e non-dominated).!

✤ We define the set Ai as the set of models that won every race that ai won.!

✤ The set of sets {A1, A2, A3, ...} then gives a summary of the winning
models over all fractured parts of the instance space.

29

Output - Example

✤ Say we have 4 models a..d and 3 instances I1..I3!

- I1 — a & d were winners.!

- I2 — a, b & d were winners.!

- I3 — b & c were winners.!

✤ Minimum hitting set: {a, b}!

- a & b cover all instances, hence c is not needed.!

✤ Set of sets : { {a, d}, {b} }!

- d won every race a did.
30

Experimental Setup

✤ 6 Problem classes!
- Knapsack, Langford’s Problem, Social Golfers, Progressive

Party,Warehouse Location Problem and Balanced Academic Curriculum.!

✤ For each problem class, 30 races, each with a time budget of 6 hours:!

- The time budget is divided by the number of models to obtain the
maximum time allowed for a particular model to solve an instance.!

- We report the output set sizes, the steps to convergence and number of
models the problem can started with, over three independent runs.

31

Experimental results - PPP

✤ PPP started of with most models.!

✤ Instance space is fractured.!

✤ When fracturing is detected, Markov is more consistent
than Undirected in the size of the returned set.

32

Experimental results - PPP

✤ PPP started of with most models.!

✤ Instance space is fractured.!

✤ When fracturing is detected, Markov is more consistent
than Undirected in the size of the returned set.

33

Experimental results

✤ Knapsack: All methods identified that the instance
space is fractured into two parts.!

✤ Langford: Markov shows a slight edge in
performance returning a single model in one case.

34

Experimental results - BACP

✤ SMAC performed poorly, because of the difficulty of encoding:!
- BACP has a complex instance space defined by 7 integers, a function and a relation.!

- When one given depends on another, such as the size of the domain of the
function: we must be conservative: sufficient SMAC parameters are used to
accommodate the maximum size of the structured given.!

- Although SMAC has demonstrated that it is able to handle large parameter spaces,
this conservative encoding may hinder its ability to cover the space effectively,
since many of the values it is producing may be ignored.

35

Experimental results - Summary

✤ Our experimental evaluation shows that all of these
methods are capable of reducing a large number of
possible models to a much smaller set.!

✤ Overall Markov was able to detect the most fractures
and reduce the number of models the most.!

✤ For SMAC, the necessary conservative encodings may
hinder its ability to cover the space effectively.

36

Conclusion

✤ During Automated Modelling we generate many
alternate models.!

✤ To select between them we generate discriminating
instances drawn from the problem class.!

✤ The methods are able to detect fracturing if it occurs
and successfully determine the best models for each
fraction.

37

